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Abstract—Information extraction from text is essential in data
science and artificial intelligence, especially with the increase in
the number of scientific articles. Robust methods are needed
to structure texts and highlight key information. Named Entity
Recognition (NER) identifies and classifies major elements in text,
aiding in dataset structuring and tagging.

Under the FAIRClinical and ShareFAIR projects, we aimed
to extract information from clinical trial publications using NER
models. These models have been successfully used for clinical
trial information extraction. In this paper, we report on the
difficulties met in reusing existing NER solutions, focusing on
mandatory replicability. This paper discusses the challenges faced
in replicating a notable study, the difficulties encountered and
lessons learned. It compares our experiment with the feedback
provided by the literature and draws conclusions.

I. INTRODUCTION

Information extraction from text represents a key field in
data science and artificial intelligence. With the significant
increase in the number of available scientific articles, it is
particularly important to develop robust information extraction
methods allowing to structure published texts and highlight
major information. More specifically, Named Entity Recog-
nition (NER) is a process in natural language processing
that identifies and classifies key elements within text into
predefined categories (entities). NER has been successfully
applied in the last years to biological texts, to detect the
presence of papers describing information about disease, genes
and proteins and possibly relationships between such entities
(1, (2.

The present work has been performed in the context of
FAIRClinical project (funded by CHIST-ERA) whose aim is to
extract key information from text and more particularly from
publications on clinical trials and clinical case reports. We
naturally rely on NER models to extract such information.
Boosted by the information extraction challenges posed by the
Covid-19 crisis and the development of deep-learning based
models, NER models have been used to extract information
on clinical trials [3]]-[5].

Following a cumulative science approach, we aimed to reuse
existing NER solutions that had shown good results on similar
datasets, with the intention of adapting them to new needs
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later. But before re-purposing an existing solution to new needs
(new corpora), one may make sure that such a solution can
be reproduced in a very similar setting (same corpus, same
models with the same hyperparameters, . ..). This re-execution
step allows to make sure that the original experiment is fully
understood.

The contributions of this paper are: 1) we discuss the
challenges we encountered while attempting to reproduce
the NER results of a paper [6] of strong interest for our
ongoing projects especially FAIRClinical and to some extent
ShareFAIR (Section [[I] and Section [[I). 2) We propose a set
of lessons learned (Section , 3) compare them with the
literature (Section [V]), and draw conclusions (Section [VI).

II. USE-CASE STUDY

In this section, we introduce the practical case that we
faced when reproducing the performance of the models and
findings reported in [[6], which served as motivation for the
development of this work. In we describe the reference
corpus and models, along with the reasons for its selection and
why we needed to reproduce the results. In we outline the
reproducibility process describing the problems encountered
and provide all the materials to redo our experiments.

A. Target Work: NER on Datasets with PICO Entities

There are several datasets frequently used in the literature on
named entity recognition in medical domain texts, particularly
using the well-known PICO framework [7]-[9]. This frame-
work identifies the words in a given medical text that belong
to the four components: Participants/Problem (P), Intervention
(1), Comparison/Control (C), and Outcome (O), which allows
the formulation of a well-defined focused clinical question.
While some datasets focus on these four top-level entities, a
more precise labeling involves creating detailed labels for each
starting span. For example, the EBM-NLP corpus [7]] allows
differentiation within participants, such as age and gender,
or in the top-level outcome entity, pain, mortality, adverse
effects, etc. can be identified. In this corpus, however, numeric
texts that identify the number of participants who had certain
outcomes are not annotated.



A novel publicly available dataset [6] addresses this lack of
precision in randomized controlled trials, concretely in relation
to numeric texts annotations. The corpus consists of 1,011 ab-
stracts of breast cancer randomized controlled trials extracted
from PubMed, the main searchable bibliographic database
supporting scientific and medical research. The abstracts were
annotated by two annotators and the inter-annotator agreement
was calculated based on Cohen Kappa [10] which reached
a score of 0.72. The PICO breast cancer dataset contains
a total of 26 entities, compared to the usual 4 found in
PICO corpora. As indicated by its authors, a more precise
annotation is provided by creating sub-entities rather than
limiting to the four top-level entities. Especially within the
outcome entity, the labeling is very detailed, with different
classes created to differentiate outcomes of the intervention
and control groups based on whether they are absolute values
(e.g., the number of patients who had certain outcomes),
percentages, average values, medians, quantiles, or standard
deviations. Table [I| presents all the entities and sub-entities
considered in this corpus. As far as we know, it is the only
publicly available dataset that provides data with this level of
precision in labeling PICO entities.

To demonstrate the quality of the dataset, the authors of
[6] trained two models: BioBERT [1] and LongFormer [11],
and justified the quality of the dataset by analyzing the
performance of the models, arguing that they achieved F1
scores greater than (.80 for most entities.

To be able to build on their models, we will first reproduce
the performance of the models on the reference corpus. It
is well-known that having a high number of classes in a
classification problem makes the task more difficult because
the model must learn more complex decision boundaries to
distinguish each category from others. This leads to data spar-
sity, as each class has fewer examples, making it harder for the
model to generalize well. Additionally, the computational load
increases due to the larger output space, and the probability of
misclassification rises, resulting in a lower overall accuracy.

Taking into account the aforementioned disadvantage in
terms of learning process and the recent publication of the
dataset, especially after identifying the lack of information in
[6]] during the training process of the models, it is necessary to
confirm the quality of the dataset. To do this verification, we
have to reproduce the given baselines to demonstrate the same
hypothesis. This way, we obtain a greater understanding
of the model learning process and gain reliability of the
results to make up for the lack of information provided.

If this hypothesis is confirmed, that is, if the published
results can be reproduced by a third party, we will be able
to use models trained with this level of accuracy in future
entity recognition tasks in the context of FAIR-Clinical project.
This would represent a significant advancement in the medical
field, enabling a transparent and reliable process for higher
precision in NER. As a result, more precise and understandable
conclusions could be automatically extracted, allowing for
quicker insights, such as drawing conclusions about the effects
of a treatment in clinical trials.

B. Reproducibility task

The publicly available dataseﬂ consists of two files for each
abstract: a . txt file containing the plain text and a . ann file
reporting the annotations made with the brat rapid annotation
tooﬂ The manuscript, however, does not provide a link to
any of the code used in the study. This has complicated the
reproduction process, which was further accentuated by the
lack of information in some parts of the procedure.

In the attempt to reproduce the baselines, we divide the pro-
cess in 4 categories: (1) Data preprocessing, (2) experimental
set-up, (3) training process, and (4) model evaluation.

1) Data preprocessing: Given the way the data is presented,
as previously explained, the first step is to transform the
data into a format compatible with what is expected by
the masked language models (MLMs) on the HuggingFace
platfornﬂ This platform provides members of the machine
learning community ways to exchange models, datasets, and
applications. HuggingFace has developed under an emphasis
on accessibility and community-driven development. As of
July 2024, it gathers 800,407 models.

During this first step, we noticed lack of information in the
process, preventing us from directly reproducing the baselines.
We thus decided to use a script from the creators of BRATE] to
transform our data into the CoNLL format, which is frequently
used in NER tasks. CoNLL format is a text file with one
word per line (together with its assigned label) with sentences
separated by an empty line. The words and their assigned
labels are separated by a tab character. It is worth noticing
that the code we used here is not the only option available
for performing the same task. We could have defined our own
tool. However, we preferred to use a standard shared open-
source code to ensure the quality of the results, allowing for
better understanding and confidence in the outcomes.

Without knowing which tool (a third-party or in-house code)
was used for transforming the data into the models’ input
format, nor guidelines to do it manually, nor direct access
to the code used, an exact reproduction of the dataset with
which we will train the models cannot be guaranteed. In
particular, different tools can use different tagging schemes:
differentiating only the words that are “Inside” of an entity
from those that are "Outside” (IO format), distinguishing the
word that "Begins” the entity chunk (IOB format), or even
identifying the word that "Ends” the set of words of an entity
and the chunks that are only a ”’Single” word (BIOES format).
Additionally, overlapping entities can be handled differently,
for example, by removing one of them.

Consequently, different configurations could result in the
generation of differently preprocessed datasets, leading to the
same model being trained on two not exactly identical datasets.

Nonetheless, despite not using exactly the same procedure,
the outputs could be the same. Considering the statistical

Uhttps://github.com/sociocom/PICO-Corpus
Zhttp://brat.nlplab.org

3https://huggingface.co/
4https://github.com/nlplab/brat/blob/master/tools/anntoconll.py
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information provided by the authors about the corpus, the only
way to compare the preprocessed data is to determine if at
least the absolute frequency of each entity class is accu-
rately reproduced after transforming the data from CoNLL
format to IOB format. The frequency obtained in our study
in comparison with the distribution reported in the reference
paper [6] can be seen in Table [I| (the difference between
our values and the reference values are in parentheses). It
can be seen that the results are not the same in 3 entities:
total-participants, outcome and outcome-Measure. Although
the difference is not very high, we must keep in mind that
from now on we will not be working with exactly the same
dataset. Therefore, the results we obtain are already subject to
this difference.

Entity Count (Diff with [6]) n° files
Participants

total-participants 1093 (-1) 847
intervention-participants 887 674
control-participants 784 647
age 231 210
eligibility 925 864
ethinicity 101 83
condition 327 321
location 186 168
Intervention & Control

intervention 1067 1011
control 979 949
Outcomes

outcome 5038 (-15) 978
outcome-Measure 1077 (-4) 413
iv-bin-abs 556 288
cv-bin-abs 465 258
iv-bin-percent 1376 561
cv-bin-percent 1148 520
iv-cont-mean 366 154
cv-cont-mean 327 154
iv-cont-median 270 140
cv-cont-median 247 133
iv-cont-sd 129 69
cv-cont-sd 124 67
iv-cont-q1 4 3
cv-cont-q1 4 3
iv-cont-q3 4 3
cv-cont-q3 4 3

TABLE 1
CORPUS STATISTICS: THE FREQUENCY OF EACH ENTITY/SUB-CATEGORY,
THE DIFFERENCE WITH RESPECT TO [|6]] IF APPLICABLE (COUNT
COLUMN), AND THE NUMBER OF ABSTRACTS IN WHICH EACH ENTITY IS
FOUND AFTER TRANSFORMATION (N° FILES COLUMN). THE
ABBREVIATIONS ”IV” AND ”CV” REFER TO INTERVENTION AND CONTROL
GROUP RESPECTIVELY, "BIN” IS USED FOR BINARY OUTCOMES AND
”CONT” REFERS TO CONTINUOUS ONES. MORE DETAILS ABOUT EACH OF
THE ENTITIES IN [6].

2) Experimental set-up: Once the data was prepared for
training the models, we encountered a significant informa-
tion gap. In order to reproduce the baselines, we would need
a substantial amount of information to conduct the training
under exactly the same conditions, such as the same data
split, method for calculating evaluation metrics, versions
of libraries used, or hardware employed, among others.
Here, the only information provided is that the abstracts were
randomly split into 80% for training data and 20% for test

data and that training was conducted with five different seeds,
averaging the Fl-score results. No information was provided
on how the metrics were calculated exactly or whether an
external tool or a custom script was used. We cannot replicate
the exact split performed, so we will most likely train the
models with different samples in each set. Additionally, the
versions of the pre-trained transformer-based models used
are not specified, nor whether/which hyperparameters were
optimized.

Therefore, at this stage, having to make many decisions to
define our set-up, we concluded that reproducing the evalua-
tion metrics scores to determine the performance of the models
without a statistically significant difference was challenging
because many factors came into play. However, at this stage
it remains possible to reproduce the findings and conclusions.

To address the information gaps and to reproduce the
baseline, we conducted two experiments: one maintaining the
same proportions of data as that of the corpus publication for
the training set (80%) and the test set (20%), referred to as
Experiment 1, and another where we introduced a validation
set to perform hyperparameter optimization by considering
half of the test set as a validation set, referred to as Experiment
2.

We made our dataset splits publicly available on Hugging-
Fac In both experiments, we have used the same models as
the ones used in the presentation of the dataset: BioBERT and
LongFormer. Concretely, as there exist different versions of
the pre-trained models publicly available, we used two models
from HuggingFaceﬂ Following [6]], we trained 5 models
in each experiment. To ensure Fl-scores reproducibility, we
controlled the different seeds used. The number of epochs (an
epoch is an hyperparameter that refers to one complete cycle
through the entire training dataset) was arbitrarily set to 40
and the configuration saved the weights of the epoch where
the micro F1-score achieved its maximum (on the test set in
Experiment 1 and on the validation set in Experiment 2). In
terms of hardware specifications, we used a single NVIDIA
RTX A6000 with 48GiB of GDDR6 GPU to fine-tune both
NER models in both experiments.

To compute the evaluation metrics, concretely Fl-score,
since there was no information about it in the publication,
we used the segeval library (version 1.2.2) [12], which
appears in the HuggingFace documentation and has been
mainly used to calculate evaluation metrics and to analyze
the performance of models trained for the NER task on the
PICO corpora [13]], [14]. We chose the default mode which
makes the reported metrics compatible with the evaluation
done in CoNLL shared tasks of the early 2000 [[15]-[17].
These events established the standard of considering a true
positive prediction typically if there is an exact match in
both the span (the tokens or characters in a chunk) and the
type assigned to the chunk (e.g., person) in named entity
recognition (NER) and other chunk extraction tasks [18]].

Shttps://huggingface.co/datasets/cuevascarlos/PICO-breast-cancer
Ohttps://huggingface.co/dmis-lab/biobert-base-cased-v1.2
https://huggingface.co/allenai/longformer-base-4096
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However, this is not the only way to calculate the metrics.
Instead of calculating true positives at the entity-level, as
explained in the standard previously described, true positives
can be calculated at the token-level. Each token is considered
independently and compared only to its target value, regardless
of the other tokens belonging to the same label. Therefore, in
this case, a true positive prediction is considered if there is an
exact match in the type assigned to the token. This alternative,
being more permissive in the computation of true positives, is
known as the relaxed or lenient approach [19].

3) Training process.: For hyperparameter
optimization in Experiment 2, we used the Optuna
Framework [20]. This tool allowed wus to fine-
tuned four hyperparameters: learning_rate,

weight_decay, per_device_train_batch_size,
per_device_eval_batch_size. It is a stochastic
approach where 15 trials are done by combining randomly
different values of the hyperparameters. In each attempt,
we restored the weights from the epoch where the loss
function on the validation set was the lowest and then
selected the combination of hyperparameters that reported
the highest micro Fl-score. The learning_rate and
weight_decay were the same for both models, while
the batch_size possible values were 8,16, or 32 for
BioBERT model and 8 or 16 for LongFormer due to
computational capacity. Precisions about the hyperparameter
optimization process and the training step in general can
be found in our codeﬂ The obtained hyperparameters for
each model in Experiment 2 are summarized in Table
In contrast, in Experiment 1, the hyperparameters were set
to: learning_rate=2e-5, weight_decay=0.01,
per_device_train_batch_size=16 and
per_device_eval_batch_size=16. We used the
default values of TrainingArgument from transformers
library for the hyperparameters that have not been explicitly
mentioned before in this paper.

4) Model evaluation: The Fl-scores obtained on the test
set in both Experiments with BioBERT model are summarized
in Table and the results of LongFormer model are in our
repository. The performance of BioBERT and LongFormer
obtained in our experiments seem to be considerably worse
in comparison with those reported in the reference paper [6].
The per-class F1-scores of all the entities were worse than the
baseline, even in Experiment 2 where the model performances
surpass the performance of models in Experiment 1 after doing
a more exhaustive hyperparameter optimization. In general
terms, looking at the macro F1-score in Experiment 2, we get
similar values to the original paper but it is caused by the fact
that the entities iv-cont-ql, cv-cont-ql, iv-cont-q3, cv-cont-q3
do not have representation in our test set and therefore the
Fl-score per class was not computed and the macro FI1 is
computed without these four entities. This fact does not entail
any loss of information given the low frequency of the entities

"https://github.com/cuevascarlos/Clinical Trials/blob/main/TrainingNER.py
8https://huggingface.co/docs/transformers/v4.41.0/en/main_classes/trainer

in question. However, that is why we will focus exclusively
on the weighted F1-score to compare the results. Here, we see
a difference up to 10 percentage points.

Hyperparameter - Model
BioBERT LongFormer
Learning rate 4.976e — 05 | 4.471e — 05
Weight decay 0.003 0.007
per device train batch size 8 8
per device eval batch size 16 16
TABLE Il

HYPERPARAMETERS OBTAINED DURING HYPERPARAMETER STOCHASTIC

SEARCH USING THE OPTUNA FRAMEWORK IN EXPERIMENT 2. THE
VALUES HAVE BEEN ROUNDED IN THE TABLE, THE EXACT
HYPERPARAMETERS ARE IN THE GITHUB REPOSITORY.

Entity 16! | Experiment 1 | Experiment 2
Participants
total-participants 0.94 0.9065 (+-0.0096) | 0.9313 (+-0.0048)
intervention-participants 0.85 0.7431 (+-0.0123) | 0.8177 (+-0.0135)
control-participants 0.88 0.7846 (+-0.0108) | 0.8480 (+-0.0124)
age 0.80 0.5638 (+-0.0300) | 0.5724 (+-0.0731)
eligibility 0.74 0.6049 (+-0.0131) | 0.6382 (+-0.0219)
ethinicity 0.88 0.7135 (+-0.0433) | 0.7163 (+-0.0353)
condition 0.80 0.6412 (+-0.0469) | 0.7122 (+-0.0421)
location 0.76 0.6156 (+-0.0226) | 0.6258 (+-0.0363)
Intervention & Control
intervention 0.84 [ 0.7805 (+-0.0047) [ 0.7899 (+-0.0095)
control 0.76 | 0.6780 (+-0.0205) | 0.6529 (+-0.0190)
Outcomes
outcome 0.81 0.6321 (+-0.0056) | 0.6667 (+-0.0151)
outcome-Measure 0.84 0.7441 (+-0.0274) | 0.8003 (+-0.0240)
iv-bin-abs 0.80 0.6184 (+-0.0278) | 0.7640 (+-0.0352)
cv-bin-abs 0.82 0.6557 (+-0.0214) | 0.8195 (+-0.0219)
iv-bin-percent 0.87 0.6460 (+-0.0174) | 0.6731 (+-0.0317)
cv-bin-percent 0.88 0.6919 (+-0.0224) | 0.7549 (+-0.0233)
iv-cont-mean 0.81 0.5081 (+-0.0352) | 0.4271 (+-0.0334)
cv-cont-mean 0.86 0.4711 (+-0.0160) | 0.4117 (+-0.0297)
iv-cont-median 0.75 0.6630 (+-0.0336) | 0.7415 (+-0.0216)
cv-cont-median 0.79 0.6937 (+-0.0195) | 0.7769 (+-0.0373)
iv-cont-sd 0.83 0.4606 (+-0.0424) | 0.6274 (+-0.0683)
cv-cont-sd 0.82 0.4711 (+-0.0514) | 0.7264 (+-0.0826)
iv-cont-q1 0 0.0000 (+-0.0000) | *
cv-cont-ql 0 0.0000 (+-0.0000) | *
iv-cont-q3 0 0.0000 (+-0.0000) | *
cv-cont-q3 0 0.0000 (+-0.0000) | *
micro avg - 0.6845 (+-0.0032) | 0.7261 (+-0.0119)
macro avg 0.6973 | 0.5495 (+-0.0022) | 0.7043 (+-0.0138)
weighted avg 0.8282 | 0.6872 (+-0.0031) | 0.7273 (+-0.0118)
TABLE III

F1-SCORE COMPARISON BETWEEN THE VALUES REPORTED IN [6] AND
THE RESULTS OBTAINED IN EXPERIMENTS 1 AND 2 USING BIOBERT
MODEL. THE MACRO AND WEIGHTED AVERAGE F1-SCORES OF [6]] HAVE
BEEN REIMPLEMENTED AND COMPUTED. ALL THE VALUES ARE THE
AVERAGE OF F1-SCORES OBTAINED FROM THE 5 TRAINING MODELS. IN
THE CASE OF EXPERIMENT 1 AND EXPERIMENT 2 ,THE STANDARD
DEVIATION IS SHOWN IN PARENTHESES. *PER-CLASS F1-SCORE IS NOT
COMPUTED IN THE LAST FOUR ENTITIES IN EXPERIMENT 2 BECAUSE NO

SAMPLES OF THESE ENTITIES EXISTED IN TEST SET.

Given the multitude of decisions we had to make inde-
pendently, it is difficult to pinpoint the exact cause of the
difference in the F1-scores. However, we can observe that the
quality of the dataset is not as clear-cut as it seemed. Identi-
fying the main differences that have caused this discrepancy
in the results is crucial to conclusively establish the validity
of both outcomes and gain reliability in result quality, which
is particularly important in the biomedical field.
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ITI. ANALYSIS OF THE RESULTS

After the attempt to reproduce the results of [6], in this
section, we provide an analysis of the outcomes to enhance the
explainability of the difference between our results and those
presented in [6]. In we present some evidence we found
that allowed us to deduce some of the missing information,
thereby increasing the credibility and reliability of our results
despite not matching those previously published. We conclude
this section in discussing briefly the reproducibility of
our results.

A. Discovering missing information to increase explainability

Following the statement ”As a community, we need to know
where our approaches fail, as much —if not more— as where
they succeed” by [21]], we aimed to identify what we might
have done wrong or what decisions might have caused each of
the differences. Without questioning the previously published
results, we needed to confirm that ours were equally valid. As
we have observed, considering the outcomes provided in [6],
we have only two options for tracking the reproducibility
process of the outcomes: corpus statistics and evaluation
metrics.

Firstly, we focus on identifying the differences seen in Table
E[, and their cause. As a reminder, in this point we aimed to
reproduce the number of occurrences of each entity. After
a deep analysis, we can conclude that in the case of total-
participants, there was a file (15023242.ann) where the same
word was tagged twice with the same label but with different
boundaries and in [6] both are considered. The tool we used,
removes overlapping entities, so we modified a function of the
BRAT tool to remove one of these annotations (the modified
script is available in our repository). In the case of outcome
and outcome-Measure, we concluded that NLP-lab BRAT tool
concatenates consecutive chunks of words with the same entity
name, while the reference paper considers the sets as two
different entities.

Secondly, we examine the evaluation metric scores. Partic-
ularly for NER tasks, there are different possible approaches
for their calculation, as we have explained before, for example,
the strict CoNLL standard or the relaxed approach. Given the
high values reported by the reference paper of the dataset,
it appears that the methodology for calculating the metrics
has been more lenient than ours and that token-by-token
classification has been considered instead of chunk-by-chunk
that is mainly used for NER tasks. To compute the metrics
in a less restrictive manner on the test set, we used the
classification report of sklearn library [22]. To do that,
we have removed the target labels that correspond to the
Outside entity and we have transformed the data into the
IO format (by removing the prefix in the prediction and the
target labels). As the experiment 2 results outperform those of
Experiment 1, we will only provide the outputs of experiment
2. Table [[V] summarizes the lenient Fl-scores in BioBERT
models and the lenient F1-scores with LongFormer models are
available in our repository. We can observe that the scores are
more similar, although there are still large differences in some

entities. Many other factors could have contributed to the less
promising outcomes obtained in these classes but we cannot
determine with certainty which of them have been influential
given the information we have. Nevertheless, we can conclude
that it indeed appears that a more relaxed approach was taken
in computing the metrics, which considerably increases the
achieved values and this decision should have been reported.

Entity Experiment 2 [ Mean - [6] |
Participants |
total-participants 0.9601 (+-0.0030) | 0.0201
intervention-participants 0.8552 (+-0.0066) | 0.0052
control-participants 0.8576 (+-0.0093) | -0.0224
age 0.9310 (+-0.0141) | 0.1310
eligibility 0.8850 (+-0.0227) | 0.1450
ethinicity 0.6321 (+-0.0308) | -0.2479
condition 0.8744 (+-0.0350) | 0.0744
location 0.8774 (+-0.0094) | 0.1174
Intervention & Control

intervention 0.8433 (+-0.0104) | 0.0033
control 0.7974 (+-0.0165) | 0.0374
Outcome

outcome 0.8775 (+-0.0121) | 0.0675
outcome-Measure 0.9643 (+-0.0146) | 0.1243
iv-bin-abs 0.8610 (+-0.0504) | 0.0610
cv-bin-abs 0.8741 (+-0.0336) | 0.0541
iv-bin-percent 0.8326 (+-0.0264) | -0.0374
cv-bin-percent 0.8444 (+-0.0195) | -0.0356
iv-cont-mean 0.6552 (+-0.0353) | -0.1548
cv-cont-mean 0.5666 (+-0.016) -0.2934
iv-cont-median 0.8241 (+-0.0171) | 0.0741
cv-cont-median 0.8325 (+-0.0182) | 0.0425
iv-cont-sd 0.8364 (+-0.0717) | 0.0064
cv-cont-sd 0.8517 (+-0.0439) | 0.0317
iv-cont-q1 * *
cv-cont-q1 * *
iv-cont-q3 * *
cv-cont-q3 * *
accuracy 0.7997 (+-0.0125) | 7
macro avg 0.7971 (+-0.0106) | 0.0998
weighted avg 0.8712 (+-0.0078) | 0.0430

TABLE IV
MEAN AND STANDARD DEVIATION F1-SCORE (LENIENT MODE) IN
BIOBERT MODELS IN EXPERIMENT 2 AND THE DIFFERENCE BETWEEN
THE MEAN ACHIEVED IN OUR SCORES AND THE BASELINE [6]].
*PER-CLASS F1-SCORE IS NOT COMPUTED FOR THE LAST FOUR ENTITIES
BECAUSE THERE ARE NO MENTIONS OF THEM APPEARED IN THE TEST
SET. TACCURACY IS NOT REPORTED IN [6]

To sum up, we gain reliability of our findings, despite
differing from those reported in [6]. The reference values
themselves are not wrong; rather, they were obtained using a
different methodology that has not been explained in sufficient
detail to be reproduced. This lack of detailed explanation in the
original study means that even though our results differ, they
are still valid within the context of our clearly defined methods
and parameters. By meticulously documenting our processes
and decisions, we provide a transparent and reproducible
framework for others to follow. This transparency is crucial
because it allows for a better understanding of the variability
in outcomes and highlights the importance of methodological
clarity in research. Our findings, although not identical to the
original study, offer valuable insights and underscore the



need for comprehensive reporting in scientific research to
ensure full reproducibility and reliability.

B. Reproducibility of the results

Reporting experiments to verify the reproducibility of one’s
own results is not a common practice in many communities.
We have observed through various runs that the only way
to reproduce exactly the same values is by using the same
GPU and the same hyperparameters. By fixing these vari-
ables and by controlling the seed during training, we were
able to reproduce the exact values. Altering these variables
cause different outcomes, making it necessary to conduct a
significance test to determine if the difference in the results is
statistically significant. We performed these checks using only
the BioBERT model because its training process is faster, and
testing all possible combinations with both models would be
computationally expensive and unnecessary for determining
that our setup is reproducible. We chose the Wilcoxon rank-
sum test because we cannot assume that the results follow a
specific distribution as, for example, the t-test does.

Using the same GPU, we compared the results obtained
when training with rounded hyperparameters (Table and
the exact hyperparameters used to report the values of the
Fl-scores in this manuscript. In terms of micro, macro,
and weighted F1 scores, the p-values obtained were 0.8345,
0.9168, and 0.7540, respectively. Additionally, for the per-
class Fl-scores, the high p-values (all above 0.05) indicate
that there are no statistically significant differences between
the Fl-scores of the models trained with rounded hyper-
parameters and those trained with exact hyperparameters.
We can conclude that small modifications or rounding of
hyperparameters do not significantly affect the model’s
performance, which simplifies hyperparameter tuning and
enhances the reproducibility of experiments.

Conversely, we have found that under different hardware
and/or with different hyperparameters, some p-values do occa-
sionally fall below 0.05. Therefore, to reproduce our results, it
would be necessary to use exactly the same hyperparameters
or approximate ones to ensure that there is no statistically
significant difference between the results across all entities.

After detailing all the decisions made to compensate the
missing information in [6] either arbitrarily or with the aim
of facilitating the reproducibility of our experiments, and also
having conducted an analysis of our own reproducibility, we
provide the necessary information for our experiment to
be replicated under the configuration indicated in Section
and thus to be able to obtain the same results. Information
about the software used and how to use our code can be found
in more detail in our GitHub repository’}

IV. GENERALIZATION FOR NER TASKS

We will gather information found in the literature and
add the lessons learned during the reproducibility process to
classify best practices based on workflow stages. This helps to

9https://github.com/cuevascarlos/Clinical Trials

trace discrepancies in outputs as they occur, enhancing reliabil-
ity and explainability. Detecting reasons for differences allows
rectification without compromising reliability. Our novel con-
tribution is a systematic, step-by-step reproducibility approach,
providing essential information to enhance reproducibility, and
it could be helpful to define standard practices in NER.

A. Defining relevant information for reproducibility in NER

The proposed workflow for defining reproducible NER is
divided into five main steps:

1. Data collection. 1t defines the collection of the data:

where it has been obtained from, the queries made to
perform data screening, if they have an identifier (ID), a
list with the IDs of the selected documents. That is, all
the necessary information to obtain exactly the same
dataset as the one proposed. Conversely, if the samples
are a subset of a known dataset, the criteria chosen for
data selection should be specified, or a script that was
used to retrieve/select exactly the same instances, the
importance of retrieval method details was also pointed
out in [23]]. Findable and accessible according to FAIR
principles [24] should be guaranteed at this step of the
workflow.
Without providing sufficient information to work with
the same dataset, comparison of the outcomes of both
experiments would be impossible, because, fundamen-
tally, the models have been trained and evaluated with
different datasets and therefore, possibly with different
distributions of variables such as the number of words
per text, the types of text used, as well as the vocabulary
that appears, among others.

2. Data preprocessing. Once the data is selected, it has
to be preprocessed in order to have an understandable
format for the models. This step includes the cleaning
process of texts, such as removing special characters,
white space, etc., or for example, if all the text of an
article has been concatenated consecutively into a plain
text without differentiating sections, or how the appear-
ance of tables, figures, captions, etc., has been managed.
Additionally, for supervised learning the labeling data
process is required and sometimes the aid of an expert is
mandatory. Specifically, in NER task, if a novel dataset
is being presented, the preparation of texts annotated by
experts is a necessary and meticulous process that must
be explained in detail: how many experts have contributed
to labeling the texts, what instructions they received
to carry out entity recognition, as well as an analysis
of the reliability of the generated annotated data. This
provides transparency in the process of generating labeled
data, increasing its reliability for subsequent use. Usually,
unless presenting a new dataset, the process explained
previously at this point has already been conducted by
other researchers before, and direct access to the cleaned
and labeled dataset is available.

In any case, in terms of preprocessing, the only remaining
decision would be to choose the transformation of the
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dataset into the models input format. In order to ensure
that models are trained with the same data in the same for-
mat, the necessary information to obtain the same inputs
must be reported, e.g., whether it is the publicly available
framework used for transformation or a script developed
specifically for the task. Additionally, in the particular
case of NER tasks, other factors must be addressed,
such as the labeling format used (IO, IOB, BIOES, etc.)
and how situations like overlapping or nesting entities
have been managed. If not, when transforming the data
into the required format using different tools, factors
such as those previously mentioned can be managed in
different ways. This would again cause differences in the
datasets used to train and evaluate the models, making it
unreliable to compare the results of the two studies. In
case of discrepancies, it would be impossible to determine
whether they are caused by the training process or are a
consequence of working with different datasets.

3. Experimental set-up. This part of the workflow is used

for defining the partition/split of the data considered,
the evaluation metrics considered (per-class, micro,
macro, weighted, etc.), the modes of metric computation,
and the choice of the library used for their computation.
For example, in NER, metrics can be computed using two
different approaches, as it has been previously discussed
and reported in [[13]], [25]. Details of all these decisions
involves communicating the set of samples each dataset
contains (train, development, test), the metrics chosen
to analyze model performance, and how they have been
calculated. This is especially important when it comes to
reproducing outcomes. Different sizes of the sets will lead
to different results and different libraries and frameworks
may approach the calculation of the same metric in
different ways, resulting in different outcomes [25]].
Furthermore, it is very important to provide software
information, such as the versions of the used libraries,
due to possible future incompatibilities or changes in the
library’s internal methodology and the hardware used
to run the training process which was also identified by
[26]. Finally, it should be specified where the considered
models come from and the versions used, for example,
there are several versions of BioBERT publicly available
in HuggingFace and each has been pre-trained with a
different approach and produces different outputs.

. Training process. The fourth step of the workflow fo-
cuses on the training process of the models. During
this step the model(s) is/are trained using a selection of
hyperparameters or by defining a parameter search and
taking into account stochasticity of the models.
Information about this step of the workflow is not
commonly reported in detail in articles, which hinders
the possibility of reproducing the results. It is crucial
to provide relevant information during this process. As
shown in our study, the outputs of the models would vary
and be strongly affected by the hyperparameters selection.
Moreover, prior work has shown the impact of hyperpa-

rameters on the robustness of transformer models [27],
therefore details about the parameters search (if done)
or the hyperparameters used should be reported. Finally,
the seed plays a non-negligible role and several runs
must be carried out to take this factor into consideration.
5. Model evaluation. Finally, the last part of the workflow
focuses on the performance assessment of the trained
models. Once experimental set-up has been defined, the
performance is analyzed in terms of the evaluation met-
rics.
Reporting the mean and standard deviation values and
doing a statistical analysis of the results enhance the
robustness of the model versus stochasticity in parameter
initialization. This increases the reliability of the results
and facilitates the comparison between studies. Other-
wise, if this practice is not carried out, only the best
performance of the models could be reported, making
reproducibility even more complicated. This approach is
more realistic and allows for a more in-depth analysis of
the quality of the obtained models. Prior work also pro-
moted reporting such information by requiring conference
submissions to mark a checklist [28]].

Table [V] provides a summary of the information we propose
in each of the steps of the workflow. It is intended to enhance
process tracking and identify the cause of differences at each
step if they exist. This fact allows to analyze reproducibility
in two steps: the preparation of data and the models training
which allows to identify internal discrepancies in each of
the workflow steps and analyze the validity of each of the
approaches that cause the difference. Additionally, we summa-
rize the information provided in the reference paper and the
information provided here based on the data we have identified
as necessary to be able to reproduce the results.

V. RELATED WORK

Reproducibility is one of the cornerstones of scientific
research, as the inability to reproduce results hampers the
progress of cumulative science. Many research communities
have reported significant challenges in ensuring observational,
statistical, and computational reproducibility. The full extent
of the reproducibility crisis was highlighted in an early study
published in 2016 in Nature [29]], which surveyed over 1,500
researchers and revealed that 70% of scientists were unable to
reproduce someone else’s results, and more than half were
unable to reproduce their own experiments. Other surveys
have followed a few years later, focusing on computational
reproducibility [30], [31]]. They report that most of the survey’s
respondents are aware of the issues of reproducibility and
aware that publishing code in a repository was an insufficient
practice to guarantee reproducibility.

In response to this crisis, various initiatives have been
developed to promote computational reproducibility, particu-
larly in the database community (e.g., reproducibility badges in
VLDB and SIGMOD conferences) and in the Machine Learn-
ing community (e.g., the Reproducibility in ML Workshop
series at ICML and the reproducibility checklist required by



Step Information Reported in [6] | Reported in Section [[I-B|
Data collection 1.1. Origin of the data* vV
1.2. Sample size* vV
Data preprocessing 2.1. Cleaning process®
2.2. Annotation preparation (number of experts, instructions for entity recognition, v’
quality analysis)*
2.3. Transformation tool for compatibility with models input format (entity format, vV
dealing with overlapping entities,etc.)
Experimental set-up | 3.1. How samples were allocated for training/validation/testing v’ In HuggingFace
3.2. Definition of the specific metrics or statistics used to report results vV vV
3.3. Framework/scorer used for computing the metrics or statistics v
3.4. Software environment In GitHub
3.5. Hardware environment vV’
3.6. Clear description of the model (availability and version) vV
Training process 4.1. The range of hyperparameters considered, method to select the best hyperparameter N
configuration, and specification of all hyperparameters used to generate results
4.2. Exact number of evaluation runs vV vV
Model evaluation 5.1. A description of results with central tendency & variation vV
5.2. Statistical analysis (significance test) vV

TABLE V
SUMMARY OF THE EXPECTED INFORMATION TO BE REPORTED IN EACH OF THE STEPS OF THE NER REPRODUCIBILITY WORKFLOW. STEP COLUMN
INDICATES THE PART OF THE WORKFLOW EACH HELPFUL INFORMATION BELONGS TO.* CASES IN INFORMATION COLUMN ARE SUPPOSED TO HAVE BEEN
PREVIOUSLY DONE BY THE DATASET PUBLISHERS. REPORTED IN [|6] COLUMN SUMMARIZES THE INFORMATION PROVIDED IN THE REFERENCE PAPER
WHILE REPORTED IN SECTION [I=BISUMMARIZES THE INFORMATION WE PROVIDE IN THIS MANUSCRIPT. ONE CHECK MARK MEANS PARTIALLY
EXPLAINED AND DOUBLE CHECK MEANS EXPLAINED IN DETAILS. SOME TERMS HAVE BEEN EXTRACTED FROM THE CHECKLIST PROPOSED IN [28]].

major ML conferences{]ﬂ). In the field of Natural Language
Processing (NLP), similar initiatives have been introduced
a few years later, and the issue remains considered as an
increasingly important topic.

The definitions of what constitutes a reproducible, repli-
cable, or re-runnable result have also been extensively
discussed across communities. A major report published in
2019 by the National Academies Press [32] has provided a
comprehensive review of the state of the art in this domain. In
the NLP community, two early papers attempted to offer some
clarity on the current definitions and even proposed consensual
definitions. Notably, a meta-review by Belz et al. (2021) [33]]
delineates differences and similarities between the existing
approaches and provides pointers to common denominators.
On the other hand, Cohen et al. (2018) [34] emphasize
that reproducibility should be considered across three distinct
dimensions: values, findings (the relationship between the
values for some reported figure of merit with respect to two or
more dependent variables), and conclusions (a broad inference
drawn from the results of the reported research, interpreting the
findings). This multidimensional approach to reproducibility
allows for a more precise identification of how results have
been reproduced—or not. In contrast, many other research
communities typically consider only two dimensions, focusing
on the ability to obtain again the exact same values or the same
scientific result [|35]].

In the particular case of NER tasks, [36] studied the
lack of information for experiment reproducibility purpose
by comparing different NER software results and showed the
influence of the NER system selection on the performance.
In addition, previous studies [21]], [37] have conducted an
exhaustive analysis of reproducibility in NER, highlighting

10https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

and analyzing the difficulties in reproducing results in NER
tasks. However, both studies use the Stanford Named Entity
Recogniser [38] and do not employ pre-trained transformers
as models, which introduces new factors that complicate the
reproducibility task.

Concretely, in [27]] the literature is analyzed to understand
how pre-trained transformers are used in practice, focusing on
how models are tuned and results on downstream tasks are
reported. A widespread lack of information is identified
in the manuscripts that utilize these models. Casola et al.
also analyzed the relation between lack of robustness and
hyperparameters. Considering that this process is not com-
monly reported in detail, and that many studies present only a
single run without accounting for stochasticity, it is concluded
that the comparison between models is often problematic and
shared and a trusted framework for model comparison is
needed in the NLP community.

Knowing the existence of the problem, there are many
studies on reproducibility in NLP, particularly proposing good
practices to facilitate result replication. However, these studies
mostly categorize premises based on the expected objec-
tives in terms of reproducibility (e.g., Digan et al. [39] catego-
rize the guidelines in terms of traceability, standarization, ver-
sioning, usability and shareability). Moreover, [26] highlights
nine critical aspects for reproduction in text mining. Other
studies such as [28]], [40], [41]] address the reproducibility of
machine learning in general where guidelines are proposed
to improve the possibilities of reproducing results. In the
particular case of NER, [18] provides guidelines to address
the problem we have found in terms of the computation of
evaluation metrics due to the fact that the difference between
models can be statistically significant depending on which
approach has been chosen for the metrics.
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VI. CONCLUSION

Reproducibility remains a critical issue in the field of nat-
ural language processing (NLP), particularly with pre-trained
transformer models for tasks such as named entity recognition
(NER). Our study aimed to replicate and validate the results
reported by previous researchers using a precisely annotated
dataset, so that we can then build on it for the purpose
of our projects, especially FAIRClinical and to some extent
ShareFAIR. However, we encountered significant challenges
due to insufficient methodological details provided in the
original work [6]]. We identified several key gaps, including
unspecified preprocessing steps, lack of clarity on hyperpa-
rameter optimization, and the absence of model configuration
details. These gaps needed independent decisions that likely
contributed to variations in our results compared to the original
study.

Despite these obstacles, we made substantial contributions
to the field by taking comprehensive measures to ensure the
robustness of our findings. We utilized open-source tools
whenever possible and provided detailed information for all
decisions made throughout each experiment. This level of
precision and transparency in the training process, coupled
with a thorough analysis of the nature of the differences
obtained, enhances the reliability and explainability of the
results reported by pre-trained transformers on the PICO-
breast-cancer dataset compared to previously published results.
Consequently, this setup can be used in future projects for
NER applied in various scenarios, allowing the transfer of
knowledge and comprehension acquired in this case study.
In addition, ongoing work includes working on a framework
to promote the use of tools enhancing computational repro-
ducibility. More specifically we are designing a set of repro-
hackathons [42] to help getting a more precise understanding
of the results of papers, specifically in NER tasks.

Furthermore, this work also contributes to generalizing
the issues faced, and comparing these problems with ex-
isting literature. We hope that the information gathered will
help establish standards for decisions made throughout the
workflow, potentially increasing reproducibility. This should
also motivate researchers to provide more detailed information
when reporting results in scientific articles, as we have done,
thereby serving as a guide to enhance reproducibility within
natural language processing.
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